

West Virginia Stormwater Runoff Reduction Workshops

Site Design Practices

- 1. Alternative Surface: Vegetated Roof
- 2. Impermeable Surface Disconnection
- 3. Permeable Pavement
- 4. Grass Channel
- 5. Dry Swale
- 6. Bioretetnion
- 7. Infiltration
- 8. Extended Detention Pond
- 9. Sheet Flow To Vegetated Filter or Open Space

1. Vegetated Roof

Green (Vegetated) Roofs

Function:

- Green roofs capture and temporarily store stormwater runoff in the growing media before it is conveyed into the storm drain system.
- A portion of the captured stormwater evaporates or is taken up by plants, which helps reduce the runoff volume and the peak rate of discharge from the roof.

Vegetated Roof: Elements

Intensive: deeper growing media layer that ranges from 6 inches to 4 feet thick;

Extensive: much shallower growing media (2 to 6 inches), which is planted with carefully selected drought tolerant vegetation

Runoff Reduction Credit: Vegetated Roof

Summary of Stormwater Functions Provided by Vegetated Roofs ¹		
Stormwater Function	Reduction Credit	
Annual Runoff Reduction (RR)	45% - 60%³	
Channel Protection & Flood Mitigation ²	Use the following Curve Numbers (CN) for Design Storm events: 1-year storm = 64; 2-year storm = 66; 10-year storm = 72; and the 100 year storm = 75	

¹ Sources: CWP and CSN (2008) and CWP (2007).

² See Miller (2008), NVRC (2007) and MDE (2008)

³ This credit is based on the available runoff reduction research. The credit provided for stormwater design in West Virginia is 100% (assuming adequate practice sizing) due to the consideration of extended filtration benefits in addition to runoff reduction.

Green Roof: Benefits

1050K Street, Washington, DC

Economic

- Heating and cooling energy use
- Extended roof life anecdotal evidence from Germany shows 2-3 X roof life, from 20 to 40-60 years.
- Social
 - Habitat Living Space
 - Aesthetics –view-scape
- Environmental
 - Urban heat island reduction
 - Temperature
 - Stormwater

3. Permeable Pavement

Permeable Pavements

 Permeable Interlocking Concrete Pavers (PICP)

• Pervious Concrete (PC)

Porous Asphalt (PA)

West Virginia Runoff Reduction Workshops

Permeable Pavements

Due to high surface infiltration

rates:

- Reduce runoff quantity
- Lower peak runoff rates
- Delay peak flows
- Even in applications with underdrains

West Virginia Runoff Reduction Workshops

Runoff Reduction Credit: Permeable Pavements

Summary of Stormwater Functions Provided by Permeable Pavement ¹		
Stormwater Function	With Underdrain	Without Underdrain
Annual Runoff Reduction	45%²	75% ²
Channel Protection	Moderate. May be able to provide some or all within the reservoir layer	
Flood Mitigation	Partial. May be able to provide some in the reservoir layer	

¹ Sources: CWP and CSN (2008) and CWP (2007).

² This credit is based on the available runoff reduction research. The credit provided for stormwater design in West Virginia is 100% (assuming adequate practice sizing) due to the consideration of extended filtration benefits in addition to runoff reduction.

Permeable Pavement (PP) Basic Sizing

- Maximum ratio of external pavement to PP is 2:1
- Pavement slope ≤ 5%
- Limit pervious "runon"
- Soil infiltration rate ≥ 0.5 in/hr (HSG A or B); or
- Underdrain with 12" gravel sump;
- Stone layer porosity = 0.4
- 48 hr drawdown of storage reservoir w/ control structure

4. Grass Channels

Grass Channels

- Grass Channels can replace C&G or Storm drain for up to five acres contributing DA;
- Allowable %IC will be determined by flow and velocity limits;
- Shorter "headwater" channels can be used prior to drop inlets to storm drain pipes in denser developments

Runoff Reduction Credit: Grass Channels

Summary of Stormwater Functions Provided by Grass Channels 1

Stormwater Function	HSG Soils	A and B	HSG Soils C and D	
Storinwater i unction	No CA ²	With CA	No CA	With CA
Annual Runoff Reduction Rate (RR)	20%	NA ³	10%	30%
Channel & Flood Protection	Partial. Designer curve number for drainage area, bat and Designers can adpath reflecting roughness for the	r each design used on annual ecount for the the effective	storm for the storm for the storm for the store the grade slope and	e contributing ion achieved; ss swale flow

¹ CWP and CSN (2008) and CWP (2007).

² CA= Compost Amended Soils.

³ Compost amendments are generally not applicable for undisturbed A & B soils, although it may be advisable to incorporate them on mass-graded and/or excavated soils to maintain runoff reduction rates. In these cases, the 30% runoff reduction rate may be claimed, regardless of the pre-construction HSG.

Grass Channels: Basic Sizing

- Bottom width 4 to 8 feet.
- Side-slopes 3H:1V or flatter.
- The maximum total contributing drainage area 5 acres.
- The longitudinal slope less than 4% (check dams may be used to reduce the effective slope to meet velocity requirements).
- The maximum flow velocity of the channel must be less than 1 foot per second during a 1-inch storm event.
- Flows non-erosive during the 2-year and 10-year design storm events
- 10-year design flow is contained within the channel (minimum of 6 inches of freeboard).

Grass Channel Applications

Best Applications

- Low density residential
- To treat turf areas
- As pretreatment to another practice
- Along highways.
- Limitations
 - Highly impervious areas
 - Steep slopes
 - Large drainage areas
 - Hotpot runoff

5. Dry Swales

Dry Swale Design Choices

Dry Swale Design Choices

- Connected dry swale storage cells
- Expanded within "treatment train" to street bioretention or street planter boxes (expanded tree pits)

Dry Swale Design Choices

Steep Slopes

- Terracing to break up steep slopes (rather than check dams);
- Stone or concrete weirs become a major design element to prevent erosion from major events

Dry Swale Performance

- Excellent research in recent years
- Significant reduce runoff volume (mean 40%)
- May be as high as 80% with greater ET and less efficient underdrain collection

Runoff Reduction Credit: Dry Swales

Stormwater Function	Level 1 Design	Level 2 Design
Annual Runoff Reduction (RR)	40%²	60%²
Channel & Flood Protection	Partial. Designers can use the RR spreadsheet to adjust curve number for each design storm for the contributing drainage area, based on annual runoff reduction achieved; and Designers can account for the Tc for the grass swale	
	flow path reflecting the effect roughness for the intended veg	ive slope and appropriate

¹ CWP and CSN (2008) and CWP (2007)

² This credit is based on the available runoff reduction research. The credit provided for stormwater design in West Virginia is 100% (assuming adequate practice sizing) due to the consideration of extended filtration benefits in addition to runoff reduction.

Dry Swales: Basic Sizing

- Bottom width of swale: 4 ft to 8 ft;
- Swale side slopes: 3H:1V or flatter;
- Effective swale slope ≤ 1%;
- Soil media depth: 18" to 36"
- Soil Infiltration: 0.5"/hr (HSG Soils A&B) or
- Underdrain with minimum 12" gravel sump;
- Pre-treatment required:
 - Forebay;
 - Grass filter strip
 - Gravel diaphragm level spreader

Dry swales: Basic Sizing

Basic Sizing:

– Storage volume provided:

```
SA*{(soil depth*0.25)+(gravel depth*0.4)+(surface ponding*1.0)}
```

- Additional storage may be provided within the soil depth, ponding behind check dams, gravel depth, or other subsurface storage (chambers, etc.,)
- Flows from larger storms may be conveyed through the dry swale if sufficient capacity is provided.

6. Bioretention

Bioretention Design Choices: Inflow

- Concentrated inflow;
- Sheet flow inflow

Bioretention Design Choices: Pretreatment

Nature of pretreatment depends on size of bioretention area and type of flow it experiences

- Concentrated flow: two cell design with a small trapping "forebay" and level spreader
- Sheet flow: grass filter strip, stone diaphragm, stone ring berm

Center for Watershed Protection

West Virginia Runoff Reduction Workshops

Runoff Reduction Credit: Bioretention

Summary of Stormwater Functions Provided by Bioretention Areas 1

Stormwater Function	With Underdrain	Without Underdrain
Annual Runoff Reduction	40%²	80%²
Channel & Flood Protection	Partial. Designers can use the RR spreadsheet to adjust curve number for each design storm for the contributing drainage area.	

¹ Sources: CWP and CSN (2008) and CWP (2007).

² This credit is based on the available runoff reduction research. The credit provided for stormwater design in West Virginia is 100% (assuming adequate practice sizing) due to the consideration of extended filtration benefits in addition to runoff reduction.

Bioretention: Basic Sizing

- Contributing Drainage Area:
 - Max contributing DA \leq 2.5 ac.
 - CDA as close to 100% IC as possible
 - Small and micro-scale preferred
- Pre-treatment:
 - Forebay
 - Grass Filter Strip
 - Gravel Diaphragm level spreader
- Soil Infiltration Rate: 0.5"/hr (HSG Soils A & B) or
- Underdrain with 12" sump

Bioretention: Basic Sizing

Basic Sizing:

- Surface Area≈5% to 6% of contributing DA
- Max ponding depth: 12"
- Minimum soil media depth: 24"
- Maximum soil media depth: 36"

Storage Volume Provided:

- SA*{(soil depth*0.25)+(gravel depth*0.4)+(surface ponding*1.0)}
- Additional storage may be provided within the soil depth, ponding behind check dams, gravel depth, or other subsurface storage (chambers, etc.,)
- Flows from larger storms may be conveyed through the dry swale if sufficient capacity is provided.

7. Infiltration

Infiltration Systems

Design Variations

- Infiltration trench
- Infiltration basin

Clogging Concerns

Infiltration Systems: Pretreatment

Infiltration: Required Pretreatment

- Pretreatment Options:
 - Forebay
 - Grass channel or filter strip
 - Gravel diaphragm level spreader
 - Other methods
- Non erosive exit velocities from pretreatment;
- Distribute flow evenly across the width of the practice

Runoff Reduction Credit: Infiltration

Summary of Stormwater Functions Provided by Infiltration		
Stormwater Function	Runoff Reduction Credit	
Annual Runoff Reduction (RR)	50% - 90% ²	
Channel and Flood Protection	 Use the RRM spreadsheet to calculate the Curve Number (CN) adjustment; 	

¹CWP and CSN (2008); CWP (2007)

² This credit is based on the available runoff reduction research. The credit provided for stormwater design in West Virginia is 100% (assuming adequate practice sizing) due to the consideration of extended filtration benefits in addition to runoff reduction.

Infiltration: Basic Sizing

- Minimum soil infiltration rate: 0.52"/hr (HSG Soils A & B);
- Minimum 2 ft between bottom of practice and seasonal high water or bedrock;
- Pre-treatment is required

8. Extended Detention Pond

8. Extended Detention Pond

Runoff Reduction Credit: Extended Detention

Summary of Stormwater Functions Provided by Extended Detention Ponds		
Stormwater Function	r Function Annual Runoff Reduction Credit	
Annual Runoff Reduction (RR)	10%	
Channel & Flood Protection	Yes; storage volume can be provided to accommodate the full Channel Protection requirements (1-yr; 2-yr, etc.) and Flood Protection requirements (10-yr)	
¹ CWP and CSN (2008); CWP (2007)		

Extended Detention Pond: Basic Sizing

- A & B soil types can yield to significant volume reductions;
- Karst terrain (may need to limit the applicability);
- Pretreatment required
 - Forebay;
 - Micropool;
- Length to width ratio ≥ 3:1
- 12-hour extended detention time for the runoff reduction volume.

Extended Detention Pond

